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Experimental work to investigate plane Couette flow has been performed in the
Reynolds number range of 750 � Re ( =hUb/(2ν)) � 5000 or 50 � Re∗ ( = hu∗/ν) � 253,
where Ub, u∗ and h are moving wall speed, friction velocity and channel half-height,
respectively. The low-Reynolds-number effect on the wall friction coefficient Cf ,
mean velocity profile and statistical turbulence quantities is discussed in relation to
the turbulent Poiseuille flow properties. Since the shear stress is constant in Couette
flow, the flow is free from the effect of shear stress gradient and the Reynolds number
effect therefore can be seen explicitly, uncontaminated by this effect. A flow region
diagram is given to show how the low-Reynolds-number effect penetrates into the
wall region. The area of the buffer region is contracted by the low-Reynolds-number
effect when Re∗ � 150, so that the additive constant B of the log law decrease as Re∗
decreases. Also, Cf has a larger value than in Poiseuille flow in the low Re∗ range.
The log-law area in Couette flow is 2–3 times as wide as that in Poiseuille flow. The
defect law is Re∗-dependent and the non-dimensional velocity gradient at the core,
Rs = (dU1/dx2)(h/u∗), increases from 3 to 4.2 as Re∗ increases from 50 to 253. The
peak value of streamwise turbulence intensity u+

1p has a constant value of 2.88 but
decreases sharply as Re∗ reduces below 150.

The large longitudinal vortices extending the entire height of the channel are shown
to be sustained in Couette flow that is oscillating around their average position.
This causes a slow fluctuation with large amplitude in the streamwise velocity com-
ponent. These vortices make the Couette flow three-dimensional and the skin friction
coefficient varies 20 % sinuously in the spanwise direction, for example. Also, the
zero-crossing time separation of streamwise velocity auto-correlation R11(τ ) becomes
longer as τ = 40h/Ub, which is 3 times as long as that in Poiseuille flow.

1. Introduction
Couette flow (C-flow) has many special characteristics due to its simple flow

geometry and simple dynamical structure and can be considered as the canonical
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wall turbulent flow together with plane Poiseuille flow (P-flow) as well as turbulent
boundary layer flow over a flat plate. From these flows we can extract much
basic and important information concerning the characteristics and structure of
turbulence, which can contribute greatly to our understanding of wall turbulence and
to developing turbulence modelling. Among these flows, extensive research efforts
have been aimed toward P-flow and turbulent boundary layer flows. Only a limited
number of works, however, in particular experimental, have been reported so far on
C-flow.

Excellent reviews of the development of C-flow research are given in Komminaho,
Lundbladh & Johansson (1996) and Bech et al. (1995) and will not be repeated
here. Recent DNS by Bech et al. (1995) Komminaho et al. (1996) and Andersson,
Bech & Kristoffersen (1992) have revealed some important characteristics of C-
flow, about which physical experiments could not contribute much. For example,
the detailed turbulent kinetic energy budget, the instantaneous streamwise vortical
structure in the central region and the role of coherent structures in the near-wall
region were discussed. From these works many questions arise that should be more
thoroughly studied. Andersson et al. pointed out that the standard gradient-type
turbulent diffusion model needs modification to realize the diffusion process in the
core region where the turbulence intensity is almost constant, i.e. zero gradient but still
with non-negligible diffusion. Lee & Kim (1991) reported that quasi-steady large-scale
streamwise vortical structures exist in the central part of the channel, but Komminaho
et al. (1996) pointed out that Lee & Kim’s computational domain was too small to
cover the long-existing large correlation along the streamwise direction in C-flow.
They performed DNS with a sufficiently long (28π times half-channel height in the
streamwise direction) computational domain and obtained similar vortical structures
that were neither stationary nor fixed in position. Combined with this vortex motion,
they also showed large elongated streaky structures of streamwise velocity aligned in
the main flow direction. The mechanism of generating and sustaining these vortical
structures, however, has not yet been clarified. These types of longitudinal vortex and
streaky structures can be seen in various turbulent shear flows. Lee, Kim & Moin
(1990) reported longitudinal streaky structures in homogeneous turbulent shear flow,
while Carruthers et al. (1991) conjectured the existence of coherent structures there.
Also, the quasi-streamwise vortex and coherent structures are the basic mechanisms
for sustaining wall turbulent flow. Each has its own particular vortex pattern, zig-
zag or long and straight in the streamwise direction, due to the different boundary
conditions attached to each flow. Hamilton, Kim & Waleffe (1995) performed DNS
of a minimal Couette channel to study the regeneration mechanism of the streak and
streamwise vortex in the central area of the channel, which is considered to be the
same as the mechanism that sustains wall turbulence.

The Reynolds number is the only parameter for C-flow, compared with two
parameters for Couette–Poiseuille flow (CP-flow) and P-flow, in which the shear
stress gradient parameter µ (to be introduced in § 2) plays an important role in
addition to the Reynolds number. Figure 1 shows the parameter plane (µ, Re∗) for
CP-flow where Re∗ = hu∗/ν, h being the half-height of the channel, u∗ the friction
velocity and ν kinematic viscosity. CP-flow can be classified into P-type flow and
C-type flow, Nakabayashi, Kitoh & Katoh (2004). C-flow, a special case of CP-flow,
has an infinite value for |µ| and is free from the µ-effect. P-flow can be realized on a
line of Re∗ = −µ. The difference of these parameter dependences between C-flow and
CP-flow or P-flow makes the Reynolds number effect appear somewhat different. For
instance, Komminaho et al. (1996) pointed out that for the turbulence characteristics
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Figure 1. Parameter plane for Couette–Poiseuille flow.

near the wall, C-flow is similar to high-Reynolds-number P-flow even though the
Reynolds number itself is low. Since the Reynolds numbers of DNS for C-flow so far
have been confined to rather low values, no systematic Reynolds number effects on
the mean values and turbulence characteristics have been investigated.

The objectives of the present paper are two-fold. The first is to study the effect of
Reynolds number on the mean quantities and turbulence characteristics. Because the
Reynolds number is a unique parameter for C-flow, we can obtain information on
the effect of the Reynolds number on the channel flow that cannot be gained from
P-flow study. The second objective is to make clear the characteristics of the large
longitudinal vortices located in the central region of the channel along with their
effects on the flow fields.

In § 2 a dimensional analysis is given to develop the similarity laws of mean and
turbulence quantities. The experimental apparatus and method are presented in § 3,
and discussion of the experimental results on mean velocity, turbulence statistics and
longitudinal vorticies are given in § 4. Concluding remarks are given in § 5.

2. Similarity laws
Here, we develop similarity laws for mean velocity and turbulence intensity in order

to discuss the effect of the Reynolds number on these variables. C-flow and P-flow
are special cases of CP-flow. To derive the velocity similarity laws near the wall for
C-flow and to discuss the laws in relation to those for P-flow, we first introduce the
dimensional relations for ∂U1/∂x2 of CP-flow, Nakabayashi et al. (2004):

∂U+
1

∂x+
2

= f1

(
x2

δv

,
h

δv

,
δs

δv

)
= f1(x

+
2 , Re∗, µ) (1)

where U1, x2, and h are mean streamwise velocity, wall-normal distance and channel
half-height, respectively. The superscript + indicates the wall variable normalized by
the friction velocity u∗ or δv . Here δv(= ν/u∗) and δs(= ρu2

∗/(dτ/dx2)) are viscous
and shear-stress-gradient length scales, respectively. ν is the kinematic viscosity.
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Re∗(= hu∗/ν) is a Reynolds number based on u∗ and h, and µ(= ρu3
∗/(νdτ/dx2))

is a shear-stress-gradient parameter. C-flow can be realized when | µ |→ ∞ because
dτ/dx2 = 0 and P-flow can be obtained when µ = −Re∗, as is shown in figure 1. It
can be said from this figure that as far as the µ-parameter is concerned, P-flow
asymptotically approaches C-flow as Re∗ increases. P-flow at low Re∗, however, has a
clear difference with C-flow, because |µ| is small.

To obtain the mean velocity formula for the wall region, we integrate equation (1)
with respect to x+

2

U+
1 (x+

2 ) =

∫ x+
2

0

∂U+
1

∂x+
2

dx+
2 =

∫ x+
2

0

f1(x
+
2 , Re∗, µ) dx+

2 . (2)

For U+
1 in the fully turbulent region, the integration can be divided into two parts:

U+
1 (x+

2 ) =

∫ x+
2b

0

f1(x
+
2 , Re∗, µ) dx+

2 +

∫ x+
2

x+
2b

f1(x
+
2 , Re∗, µ) dx+

2 . (3)

Here, x+
2b indicates the distance to the boundary between the buffer and fully turbulent

regions and has a value of about 70 for high-Re∗ conventional wall turbulence, but a
different value depending on Re∗ and µ for low-Re∗ or low-µ turbulent flow. This is
because Re∗ and µ effects penetrate into the wall region as the parameters decrease
below certain values. The first term on the right-hand side shows the contribution
from the viscous and buffer regions, while the second indicates that from the fully
turbulent region. As is usual, the second term can be expressed using the Kármán
constant κ:∫ x+

2

x+
2b

f1(x
+
2 , Re∗, µ) dx+

2 =

∫ x+
2

x+
2b

1

κx+
2

dx+
2 =

1

κ
ln x+

2 − 1

κ
ln x+

2b(Re∗, µ). (4)

As Nakabayashi et al. (2004) reported, κ has a constant value irrespective of Re∗
and µ. Thus, the log law for CP-flow is

U+
1 (x+

2 ) =
1

κ
ln x+

2 + B(Re∗, µ) (5)

where

B(Re∗, µ) =

∫ x+
2b

0

f1(x
+
2 , Re∗, µ) dx+

2 − 1

κ
ln x+

2b(Re∗, µ). (6)

As the relation µ = −Re∗ holds for P-flow, the log law can be expressed as

U+
1 =

1

κ
ln x+

2 + B(Re∗, −Re∗). (7)

The physical meaning of each Re∗ in the parentheses of this relation is different. The
first is the length scale ratio of h to ν/u∗ indicating the effect of the outer scale on the
wall region (conventional Re∗ effect), while the second (Re∗ = −µ) is the shear stress
gradient parameter. Equation (7) shows that the Re∗ dependence of the U+

1 profile for
P-flow comes from a combination of Re∗ and µ effects, although Re∗ is apparently
the only parameter for this flow. This indicates that variation of the P-flow profile
with Re∗ in the low-Re∗ range does not necessarily mean that it is a low-Re∗ effect
on the law of the wall. For C-flow, however, due to | µ |→ ∞, the µ parameter drops
out from equation (5) and the velocity law can be written as

U+
1 =

1

κ
ln x+

2 + B(Re∗). (8)
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Thus the Re∗-dependence of U+
1 for C-flow, if any, shows the effect of Re∗ itself on

the law of the wall.
For the core region of C-flow, the velocity defect law can be given as

Uc − U1

u∗
=

1

1/Re∗ + 2D1c

(
1 − x2

h

)
= Rs(Re∗)

(
1 − x2

h

)
(9)

where Uc is the velocity at channel centre, Nakabayashi et al. (2004). Here, Rs is
the slope of the defect law and generally a function of Re∗. D1c(= νt/(2hu∗)) is non-
dimensinal eddy viscosity. Unlike P-flow, the defect law includes the Re∗ effect due to
the non-zero shear at the core region.

If x2u is the distance to the boundary between the log law and the defect law,
x2u = 0.2h is a good estimation for P-flow, Gad-el-Hak & Bandyopadhyay (1994),
which is obtained from the assumption that the log law is valid in the range of constant
Reynolds shear stress. For C-flow, however, Reynolds shear stress is inherently con-
stant throughout the channel, and x2u is obtained from different assumption and will
have a value different from P-flow.

The turbulence intensity (r.m.s. value) of fluctuating velocity u′
i , denoted as ui , for

C-flow can be expressed as
ui

u∗
= f2(x

+
2 , Re∗). (10)

A linear relation can be expected for a very small x+
2 range as

ui

u∗
= A1x

+
2 . (11)

There exists a region far but not too far from the wall where the inner and outer
scales δv and h do not have a significant effect on turbulence. Thus, x+

2 and Re∗
should be dropped from f2 in this region, and the turbulence intensity has a constant
value, i.e. plateau region:

ui

u∗
= Ci (12)

Further away from the wall, i.e. in the core region, u∗ and h are typical scales for
turbulence and the following similarity law holds (the parameter Re∗ is included for
the same reason as in equation (9)):

ui

u∗
= f3

(
x+

2

h
, Re∗

)
. (13)

3. Experimental apparatus and method
Figure 2 shows a schematic diagram of the experimental setup for C-flow. The test

channel consists of a stationary wall on one side and a moving wall on the other, and
is 5.12 m in length and 0.88 m in width. The channel height 2h was selected as 27 mm,
except when the Reynolds number Re (= hUb/(2ν), Ub is moving wall velocity) =
5000, for which 47 mm was adopted. The moving wall consists of a conveyer belt
made of polyurethane. The tension of the belt was carefully adjusted by two rollers so
as to run smoothly on the base plate without any fluttering and/or sinuous motion.
The coordinate system is (x1, x2, x3), where x1, x2 and x3 are the streamwise distance
from the centreline of the forward roller, the wall-normal distance from the stationary
wall and the spanwise distance from the centre line of the channel, respectively.
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Figure 2. Experimental apparatus.

The air was blown through a two-dimensional nozzle into the channel inlet section,
where a shear-generating grid was installed to promote fully developed C-flow in a
short inlet length. The grid was designed based on the theory of McCarthy (1964)
to generate a mean shear rate of (2h/Ub) dU1/dx2 = 0.38 in the central part of the
channel. To minimize the effect from various disturbances in the laboratory on the
C-flow, the nozzle was installed at the channel exit.

The instantaneous velocity of the C-flow was measured by a hot-wire anemometer
using I- and X-type probes. The I-probe utilized 5 µm tungsten wire with 0.8 mm
sensing length, whereas the two X-probes, u1u2 and u1u3, used 3 µm tungsten wire
with 0.5 mm sensing length. The separation between the two wires of the X-probe was
0.5 mm. The signals from the hot-wire anemometer were stored on a PC disk through
a 12-bit A/D converter with a sampling rate of 10 kHz for 120 s. The distance of
the wire closest to the stationary wall was measured by viewing the wire and its
reflection image on the wall in a microscope within an accuracy of ±0.003 mm. The
pressure holes, 0.8 mm in diameter, were placed on the stationary wall, every 500 mm
in the x1-direction, and the wall static pressure was measured by a precision pressure
cell having 0.1 Pa resolution. Belt speed Ub was measured optically by counting the
number of tape strips glued on the belt as they passed a photo detector in a unit of
time.

Friction velocity u∗ was estimated from the mean velocity near the stationary
wall measured by the I-probe, based on the principle proposed by Bhatia, Durst &
Jovanovic (1982) and on the procedure used by Nagano, Tagawa & Tsuji (1991).
According to Bhatia et al. the apparent nominal velocity profile close to the wall

U+ = F (x+
2 ) (14)

is identical as long as the probe and materials of the wall and wire are the same.
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Figure 4. Wall pressure distribution along the streamwise direction at Re= 3750.

For a given moving wall speed Ub, C-flow was developed by adjusting the flow
rate into the channel so that the following two conditions were satisfied. First, that
the pressure gradient along x1 is zero, and second, that mean velocity at the channel
centre, x2 = h, 〈Uc〉 is set equal to Ub/2 within a 1 % margin of error at the measuring
station. Here, we use the value averaged along the spanwise direction, indicated by
bracket 〈·〉, because Uc varies sinuously along the x3-direction in C-flow, as is shown in
figure 3. Figure 4 shows a typical example of wall pressure distribution �pw = pw −pr

at Re = 3750, where pr is reference wall pressure at x1/(2h) = 171. In the downstream
section of x1/(2h) � 90, the wall pressure is almost constant within ±0.1 % of 1

2
ρU 2

b ,
and C-flow is expected to be fully developed there. At very low Reynolds numbers,
however, the wall pressure method does not work well because �pw is so small
that the resolution of the pressure cell is not sufficient to obtain convincing data,
and recourse is made to the second condition noted above. The development of the
velocity distribution from the inlet section was carefully studied to obtain a fully
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Figure 5. Development of mean velocity distribution at Re= 3750. x1/(2h): +, 40;
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Figure 6. Development of skewness factor distribution at Re= 3750. x1/(2h): +, 40;
�, 55; �, 72; �, 89; �, 106; �, 123; ×, 140; �, 157.

developed C-flow. Figures 5 and 6 show the development of the mean velocity U1 and
skewness S(u′

1) along x1/(2h) at Re = 3750. Although U1 is apparently fully developed
at x1/(2h) = 40, the skewness S(u′

1), one of the higher turbulence moments, requires
a longer inlet length of x1/(2h) = 72–89 to confirm full development. This result is
consistent with that of the wall pressure. In this work, the test section was placed
at x1/(2h) = 157 for the 2h = 27 mm channel or x1/(2h) = 90 for the 2h = 47mm
channel.
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Re∗ = (hu∗/ν) Re = (hUb/2ν) Symbol

Couette flow 253 5000 �

192 3750 �
138 2500 �

100 1750 �

73 1250 �

50 750 �©

Poiseuille flow 191 3750 �

97 1750 �

Table 1. Experimental conditions and symbols.

Under ideal conditions, i.e. having no preferred position along the spanwise direc-
tion, the long-time-averaged velocity Uc is considered to have no wavy pattern along
the x3-direction. In the physical experiment on C-flow, however, the uncontrollable
small disturbance and/or finite width of the channel could induce a wavy pattern in
the velocity profile as shown in figure 3. The wavy pattern was also confirmed by
Pitot tube measurements. The Pitot tube system had a time constant of one minute
and a long time average was possible. The wavy variation, however, is less than
about ±1 % in the present experiment. This spanwise variation of Uc is due to the
existence of large-scale streamwise vortices, as was indicated by Lee & Kim (1991) in
their DNS. Because the large-scale streamwise vortices were quasi-stationary in their
DNS, the variation of Uc was anomalously large, about ±20 %. However, since the
large-scale streamwise vortices are not stationary in space and time as Komminaho
et al. (1996) pointed out, the wavy pattern of Uc would be blurred, although it would
not completely disappear, as shown in figure 3. Considering that the the spanwise
variation of Uc is small and the associated u∗ variation almost cancels the U1 variation
if expressed in wall variable like U1/u∗, we can disregard the spanwise variation of
U1 as well as the turbulence quantities in the first part of this work (§ 4.1 to § 4.3);
thus, the measurements were made at x3 = 0. In discussing the characteristics and
the effect of the large-scale streamwise vortices on the flow fields (§ 4.4), the spanwise
variation of the velocity profile was also measured.

The experiments were performed under six conditions for C-flow and two conditions
for P-flow, as summarized in table 1, where the Reynolds numbers, Re∗ = hu∗/ν and
Re = hUb/(2ν), and the corresponding symbols are given. The P-flows were realized
in the same channel by making the belt stationary.

4. Experimental results and discussions
4.1. Wall friction coefficient

The wall friction coefficient Cf , defined based on Uc(= Ub/2 for C-flow) as

Cf =
τw

1
2
ρU 2

c

, (15)

is compared with other researcher’s results, including results for P-flow and C-flow
from the physical experiment and DNS, in figure 7. Here, τw is the wall shear stress.
Since the transitional Reynolds number of C-flow from laminar to turbulent flow was
reported as (Re)t = 360 by Tillmark & Alfredsson (1992), the lowest Reynolds number
in the present study, Re = 750, is well within that for a fully developed turbulent
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103 104
10–3

10–2

Re

Cf

Equation (16)

Figure 7. Wall friction coefficient Cf . Experiment: �, present; �, Nakabayashi et al. (1988);
�, Reichardt; �, Robertson & Johnson; �, El Telbany & Reynolds (1982). DNS: �,
Komminaho et al.; �, Bech et al. Empirical formulae: −−−−, Robertson & Johnson for
C-flow; −−−−, Hussain & Reynolds for P-flow.

C-flow. The present results show fairly good agreement with those of Robertson &
Johnson (1970) and DNS by Bech et al. (1995) and Komminaho et al. (1996). The
empirical formula proposed by Robertson & Johnson

Cf =
0.0722

(log Re)2
, (16)

shown by a broken line in the figure, is a good estimation for Cf in the range of
750 � Re � 16500. The results of Reichardt (1959) and El Telbany & Reynolds (1982)
are slightly lower. Nakabayashi et al. (1988) reported that the experimental results
of El Telbany & Reynolds suffered from a short inlet length resulting in a lower
turbulent intensity, which may have caused a lower Cf in their results. The results of
Nakabayashi et al. (1988) are anomalously low in the range of 1000<Re < 2000. An
adjustable plate normal to the flow instead of the shear generating grid was installed at
the exit of the two-dimensional nozzle in their experiment. The transitional Reynolds
number to turbulent flow might be delayed in their experiment due to the different
channel inlet condition.

The solid line, the empirical formula of Cf for P-flow reported by Hussain &
Reynolds (1975), has almost the same value as equation (16) in the range of Re � 4000.
Because of the relation Cf = 2/(U+

c )2, where U+
c = U1(h)/u∗, this suggests that the

mean velocity profile on one side of a wall normalized by friction velocity, U+
1 , is

almost the same for the two flows, except for the low Reynolds number range. At low
Re, less than 4000, Cf of C-flow is larger than that of P-flow. This indicates that there
exists some difference in the velocity profile and/or the turbulence characteristics
between C- and P-flows in this low-Reynolds-number range.

4.2. Mean velocity profile

To study the mean velocity profile in detail, we first consider the flow region diagram
for C-flow. The mean flow velocity profile can be divided into linear, buffer, log and
defect regions, respectively. To this end, the variations of x+

2 dU+
1 /dx+

2 against x+
2 are
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Figure 8. Distribution of x+
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2 . For symbols, see table 1. Fitting lines for

Re∗ = 100: −−−, linear region; −−-−−, log region; −−−−, defect law region.

studied as in figure 8, where each region has the following relation:

x+
2

dU+
1

dx+
2

= x+
2 linear region,

x+
2

dU+
1

dx+
2

=
1

κ
log law region

x+
2

dU+
1

dx+
2

= Rs
Re∗

x+
2 defect law region.

Each of the three lines drawn to fit the experimental data for Re∗ = 100 in the figure
corresponds to one of the above relations. From these fitting lines and the corres-
ponding data points, we can estimate the range of each region, as shown in the figure.
The flow regions thus obtained for various Re∗ are summarized as a flow region
diagram in figure 9.

In the linear region 0 � x+
2 � 5, an Re∗ effect cannot be seen. A buffer region exists

between the linear and log regions. The boundary between the buffer and log regions,
denoted by x+

2b and indicated by a bold broken line, is Re∗-independent and is located
around 80 when Re∗ is greater than 200. However, it shifts toward the wall as Re∗
decreases below around 150. This indicates that the low-Re∗ effect in the buffer region
appears when Re∗ < 150. The mechanism of this low-Re∗ effect is not yet known, but
the penetration of strong ejection from the opposite wall may be a possible cause.
The upper boundary of the log law (or lower boundary of defect law), denoted as x+

2u,
is indicated by a fine broken line in the figure. This can also be given as a crossing
point between the log and defect laws like x+

2u = Re∗/(κRs). Taking Rs ∼ 3 as given
later, x+

2u ∼ 0.8 Re∗. Comparison of this with x+
2u =0.2 Re∗ for P-flow reveals that the

log-law area in C-flow is significantly wider than that in P-flow. The two boundaries
x+

2b and x+
2u merge when Re∗ is about 50–70, which is considered to be the lowest Re∗

for the existence of a log region. Due to the scatter of data and difficulty of fitting
them on a line in figure 8 at such low Re∗, the existence of the log law is not so
certain in the range Re∗ < 100. Therefore, the boundary lines of x+

2b and x+
2u shown in

figure 9 are indicated by dotted lines instead of broken lines in this range. As shown
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Figure 10. Wall law of Couette flow. For symbols, see table 1. ×, Poiseuille flow by
Hussain & Reynolds at Re= 55200.

later, Rs increases with Re∗, and the ratio of width of the defect law hD(= h − x2u) to
half the channel height, hD/h = (1 − 1/(κRs)), increases with Re∗.

Figure 10 shows the mean velocity profiles plotted in wall variables on a semi-log
graph for various Reynolds numbers. The P-flow data of Hussain & Reynolds (1975)
are also given in the figure for comparison. All present data follow the log law,
equation (8). Applying the least square fit to the data of the corresponding area, the
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Figure 11. Variation of additive constant B with Re∗. Couette flow: �, present; �,
Nakabayashi et al. (1988); �, El Telbany & Reynolds (1980); �, Bech et al.; �, Komminaho
et al.; −−−−, most probable curve for Couette flow. Poiseuille flow: �©, Patel & Head; 	, Wei &
Willmarth; 
, Nakabayashi et al. (1995); +, Antonia et al.; ×, Hussain & Reynolds; �, Kim
et al.; −−−−, fitting curve for channel; −−-−−, pipe flow.

Kármán constant κ is shown to be a constant of 0.4 irrespective of the Reynolds
number. However, the additive constant B changes slightly with Re∗. The Reynolds
number dependence of B is shown in figure 11, in which the results for P-flow in a
parallel plate and pipe reported by Patel & Head (1969) are given by broken and
chain-dot lines, respectively. The general trend of P-flow is that B increases as Re∗
decreases below around 300. For C-flow, however, B decreases from 5.5–5.7 at its
high-Reynolds-number value, as Re∗ decreases below around 150. There is a large
difference between the two flows. It is generally believed that the flow near the wall
is similar for both C- and P-flows, Lee & Kim (1991). This is true for high-Reynolds-
number flows, but not for low-Reynolds-numbers. This can be explained as follows.
As developed in § 2, B depends only on Re∗ for C-flow but depends on Re∗ and
implicitly on µ for P-flow, see equations (7) and (8). As a consequence, reduction of
B with Re∗ for C-flow is the effect of low Reynolds number. The increase of B for
P-flow is caused by the effect of µ rather than that of Re∗, which has been confirmed
by Kitoh, Nakabayashi & Kotoh (1995).

The low-Reynolds-number effect on B for C-flow can be explained by the change
of x+

2b and/or that of U+
1 profile in the buffer region with Re∗, as developed in equ-

ation (6). As already shown in figure 9, x+
2b decreases with Re∗ if Re∗ is smaller than

about 150. The subtle change in the U+
1 profile can be studied more easily through

the distribution of x+
2 dU+

1 /dx+
2 . If Re∗ is larger than around 150 the distributions of

x+
2 dU+

1 /dx+
2 collapse on a single curve in the buffer region but shift downward for

Re∗ less than 150. The chain dot line in figure 9 indicates the boundary in the buffer
region above which the U+

1 profile is affected by Re∗. The effect of Re∗ penetrates
into smaller x+

2 as Re∗ decreases. The combined effects of variations of the x+
2b and

U+
1 profile in the buffer region are responsible for the decrease of B at low Reynolds

numbers.
From the variation of B with Re∗, the critical Reynolds number at which the law of

the wall for U+
1 begins to be affected is Re∗ = 150–200. Below this Reynolds number,
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Figure 12. Variation of Rs with Re∗. Experiment: �, present; �, Robertson & Johnson; �,
El Telbany & Reynolds (1982); �, Nakabayashi et al. (1994); �, Nakabayashi et al. (1988); �,
Reichardt. DNS: �, Bech et al.; 	, Komminaho et al.

the buffer region is forced to contract as Re∗ decreases. This is the reverse of the
trend for P-flow.

In the velocity defect law, equation (9), Rs = (∂U1/∂x2)(h/u∗) is the slope of the
defect law that indicates the ratio of a typical large turbulence time scale (h/u∗) to the
mean shear time scale (∂U1/∂x2)

−1. Rs varies with Re∗. The variation of Rs with Re∗
is summarized in figure 12 together with other researchers’ results. The present results
and DNS strongly support the increasing trend of Rs in the range of Re∗ � 250,
while the results of Robertson & Johnson (1970) show the reverse trend. Equation (9)
shows that the increase in Rs in the low-Re∗ region is partly due to a direct viscous
effect but mostly due to the change of D1c with Re∗. At higher Re∗, Re∗ � 500, Rs

seems to approach a constant value of about 5, but lack of reliable data prevented
us from making a decisive conclusion.

4.3. Turbulence characteristics

Figure 13 shows the distribution of the turbulent kinetic energy production Pr+

against x+
2 . Pr+ for CP-flow can be given as

Pr+ = −u′+
1 u′+

2

dU+
1

dx+
2

=

(
1 +

x+
2

µ

)
dU+

1

dx+
2

−
(

dU+
1

dx+
2

)2

. (17)

For P-flow there is an explicit effect of µ, as is given in the above equation (conven-
tionally, this effect is described as the Re∗-effect). An appreciable Pr+-distribution
change with Re∗ has been reported by Antonia et al. (1992). For C-flow, however,
because the | µ |→ ∞, the Pr+-profile seems to be universal and no explicit Reynolds
number effect can be expected. The experimental results also confirm that there is
no noticeable Reynolds number effect, and that the profile is quite similar to that of
P-flow at high Reynolds numbers. Komminaho et al. (1996) discussed in their paper
that the Pr+-profile of C-flow is the high-Reynolds-number equivalent of P-flow, the
maximum value of which is 0.25 at dU+

1 /dx+
2 = 0.5 (at x+

2 is about 12). For very low
Reynolds numbers, however, the implicit effect of Re∗ on the Pr+-profile appears
through the variation of the velocity profile, U+

1 (x+
2 ), with Re∗. For Re∗ less than
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Figure 13. Production of kinetic energy of turbulence. For symbols, see table 1. Poiseuille
flow: −−−−, Antonia et al. (Re= 3300); - - - -, Antonia et al. (Re= 7900); −−−−, Wei &
Willmarth (Re∗ = 169); −−-−−, Wei & Willmarth (Re∗ = 717).
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Figure 14. Turbulence intensity profile u1
+. For symbols, see table 1. Couette flow: −−−−,

Lee & Kim (Re∗ = 170). Poiseuille flow: ×, Wei & Willmarth (Re∗ = 169); 	, Wei & Willmarth
(Re∗ = 1608); −−-−−, Kim et al. (Re∗ = 180).

about 100, Pr+ has a lower value than the high-Re∗ value in the area x+
2 > 18 for

Re∗ = 50 and x+
2 > 35 for Re∗ = 73. This shows that the influence of low Reynolds

numbers on the turbulent energy production appears in the buffer region.
Figure 14 shows the turbulence intensity distribution normalized by the friction

velocity, u+
1 = (u′2

1 )1/2/u∗. For C-flow, the change of the distribution with the Reynolds
number is quite small compared with that for P-flow reported by many researchers,
Wei & Willmarth (1989) for example. Up to x+

2 � 6, the linear relation of equation
(11) with a coefficient A1 = 0.33 holds and no Reynolds number effect can be seen
there. In the buffer region, 8 � x+

2 � 80–90, an Re∗ effect on the profile can be seen
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Figure 15. Variation of peak value of u1
+ with Re∗. Couette flow: �, present; �©, Lee & Kim;

×, Bech et al. (DNS); 
, Bech et al. (Exp.); �, Komminaho et al.; 	, El Telbany & Reynolds
(1982); −−−−, fitting curve for C-flow. Poiseuille flow: �, Antonia et al.; �, Wei & Willmarth;
�, Kuroda; - - - -, fitting curve for P-flow.

for low Re∗, and u+
1 decreases as Re∗ decreases. The decrease of Pr+ at low Re∗ is

one reason for the low u+
1 .

In the central area, the core region exists where an outer length scale h dominates,
as shown by equation (13). From the experimental results, u+

1 is constant at about 2.
At first glance, the constant-valued core region extends down to the edge of the buffer
region, x+

2 ∼ 80. However, a closer look at the profile, not shown here, reveals a small
area with a different constant between the buffer and core regions; it is slightly higher
(∼ 0.07) than that in the core region. This area could correspond to the plateau region
introduced in equation (12). This plateau region is indicted by a hatched area in the
flow region diagram, figure 9. The area is completely embedded in the log region. It
is interesting to note that P-flow in a pipe has a similar plateau region. From careful
measurements of pipe flow, Perry & Abell (1975) obtained the constant value area
u+

1 � 2.1, whose region is consistent with the log law.
The peak value of u+

1 , denoted as u+
1p , is located at x+

2 � 14. The variations of
u+

1p for C- and P-flows with Re∗ are summarized in figure 15. C-flow has a constant
value of u+

1p � 2.88 when Re∗ � 150 but shows a sharp drop to about 2.72 for a
small Re∗ change. For P-flow, u+

1p increases gradually with Re∗, which may be due
to the µ-effect on Pr+. This P-flow trend is also confirmed in the review article by
Gad-el-Hak & Bandyopadhyay (1994).

Turbulence intensity of the wall-normal component u+
2 is shown in figure 16. The

present data are limited to the range x+
2 � 40 because of wall interference with the

hot-wire probe. No Re∗ effect can be seen. In the range x+
2 � 70, u+

2 has a constant
value of 1.16. The profile of P-flow largely depends on Re∗ and asymptotically
approaches the C-flow profile as Re∗ increases.

The skewness S(u′
1) and flatness F (u′

1) are shown and compared with the P-flow
in figures 17 and 18. The present data are consistent with the DNS result of Bech
et al. (1995). No difference in the S(u′

1) profile between C-flow and P-flow can be seen
close to the wall, x+

2 � 12. In the buffer region, S(u′
1) takes on typical negative values
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Figure 16. Turbulence intensity profile u2
+. For symbols, see table 1. −−−−, DNS by Bech

et al. for Couette flow (Re∗ = 82). Re∗ for Poiseuille flow by Wei & Willmarth: �, 169; +, 714;
	, 989; ×, 1608. DNS by Antonia et al.: −−−−, Re= 3300; - - - -, Re= 7900.
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Figure 17. Skewness factor of u′
1. For symbols, see table 1. −−−−, DNS by Bech et al. for

Couette flow (Re∗ = 82). Poiseuille flow: �, present (Re∗ =191); �, present (Re∗ =97); −−-−−,
DNS by Kim et al. (Re∗ = 180); −−- -−−, DNS by Kuroda (Re∗ =100).

of wall turbulence showing a distinctive ejection motion. However, |S(u′
1)| of C-flow

is smaller than that of P-flow, which means that the ejection for C-flow is relatively
less important than that for P-flow. In the fully turbulent region, x+

2 � 70, S(u′
1) � 0,

compared with the large negative value for P-flow. C-flow has non-zero Pr+ even in
the central area, and the turbulence activity there is fairly strong compared with that
in the P-flow that brings an intensified sweep motion down in the wall direction. This
is why | S(u′

1) | becomes low in C-flow. F (u′
1) has the same features as S(u′

1). Up to
x+

2 ∼ 12, both C- and P-flows show a typical wall turbulence profile, i.e. high value
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Figure 18. Flatness factor of u′
1. For legend, see figure 17.

very close to the wall followed by a sharp drop to its minimum at about x+
2 ∼ 10 after

which it increases again. At x+
2 � 40, C-flow has a constant value of 2.7–2.8, while

the P-flow has a higher value and the profile varies with Re∗. Judging from the S(u′
1)

and F (u′
1) profiles, it is only very close to the wall region (x+

2 � 12) that C-flow has
conventional wall turbulence properties. Away from that region, the enhanced sweep
motion makes the C-flow turbulence different from that in P-flow. The probability
density of u′

1 has a more Gaussian-like character, especially in the fully turbulent
region.

The generation of the Reynolds shear stress in C-flow is examined by a joint
probability density distribution of u′

1 and u′
2. Figure 19 shows the distribution at

x+
2 = 40. The P-flow result is also shown for comparison. On the negative-u′

1 side,
C-flow and P-flow have the same distribution, whereas on the positive-u′

1 side the
distribution of C-flow extends to a higher u′

1 than in P-flow. The Reynolds shear
stress in C-flow is generated more evenly by both ejection and sweep. This indicates
that it is not the ejection (u′

1 < 0) but the sweep (u′
1 > 0) coming from the central

area that characterizes C-flow turbulence.
Figure 20 shows the correlation coefficient R12(= −u′

1u
′
2/(u1u2)). Except for the wall

vicinity, R12 has a nearly constant value of about 0.43, which is fairly close to that of
the uniform shear flow R12 = 0.45–0.47 reported by Tavoularis & Karnik (1989). The
anomalous results R12 = 0.7 of El Telbanny & Reynolds (1982) are due to the short
inlet length needed to obtain developed C-flow.

Figure 21 shows the auto-correlation coefficient R11(τ ) of u′
1(t). Here τ is the time

separation. Using Taylor’s frozen turbulence hypothesis, R11(τ ) can be translated into a
two-point velocity correlation coefficient R11(�x1). It is generally accepted that C-flow
has a long correlation time (or length) compared to P-flow. At the channel centre, the
time separation τ at which R11(τ ) crosses zero is 40h/Ub, irrespective of the Reynolds
number, which is about 3 times as long as that of the P-flow at Re∗ =191. In the
figure, the DNS results of Komminaho et al. (1996) and the experiment by Tillmark &
Alfredsson (1994), are shown for comparison. All results, except for Tillmark &
Alfredsson’s (1994) with Re = 3360, coincide in the range �x1/h � 10, but the DNS
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Figure 19. Joint probability density of u′
1 and u′

2 at x2
+ = 40. (a) Couette flow at Re∗ = 192.

(b) Poiseuille flow at Re∗ = 191.

result has a stronger correlation than the present one at greater distances. As
Komminaho et al. admitted in their paper, R11(�x1) was overpredicted due to the
self-imposed symmetry constraint, and R11 had a non-zero value even at �x1 = 44h.
They also showed a streaky structure of streamwise velocity with the associated
vorticity, which is the reason for the long correlation length of R11. Tillmark &
Alfredsson (1994) found a larger correlation at Re = 3360 than that at Re = 1240, and
concluded that the structures are more pronounced at high Re. However, compared
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Figure 20. Correlation coefficient R12 between u′
1 and u′

2. For symbols, see table 1. Re∗ of
Couette flow of experiment by El Telbany & Reynolds (1982): �, 434; 	, 560, +, 626; ×, 806.
DNS of Couette flow: −−−−, Bech et al. (Re∗ = 82); −−-−−, Komminaho et al. (Re∗ = 52).
DNS of Poiseuill flow: −−−−, Kim et al. (Re∗ =180); - - - -, Kuroda (Re∗ =100). −−- -−−, uniform
shear flow by Tavoularis & Karnick.

with the present result having a similar Reynolds number of 3750, Re is indeed not
a defining parameter for the structures. Perhaps the channel geometry and/or inlet
condition may have some effect on the structures. Close to the wall (x+

2 = 15), the
correlation length is decreased in C-flow, but is still longer than in P-flow, whose
integral length scale is known to become larger as the wall is approached.

4.4. Large longitudinal vortical structure

The streamwise velocity component U1 has a distinct quasi-periodic change along
the spanwise direction, as was described in § 3. We introduce a mean velocity, 〈U1〉,
averaged in the spanwise direction and the wavy component ũ1 as

〈U1(x1, x2)〉 =
1

L

∫ L/2

−L/2

U1(x1, x2, x3) dx3,

ũ1(x1, x2, x3) = U1(x1, x2, x3) − 〈U1(x1, x2)〉.


 (18)

Here, L is a spanwise length long enough to obtain an appropriate average, or
one wavelength in the case of periodic variation. The instantaneous velocity U1 is
decomposed into 〈U1〉, ũ1 and the fluctuating component u′

1 as

U1(x1, x2, x3, t) = 〈U1(x1, x2)〉 + ũ1(x1, x2, x3) + u′
1(x1, x2, x3, t). (19)

The wavy pattern of ũ1 and its amplitude depend on the inlet conditions to the
channel, e.g. the type of shear-generating grid, but never disappear in any way. This
wavy variation is caused by large longitudinal vortical structures, as was indicated by
Lee & Kim (1991). Considering the work by Komminaho et al. (1996) that showed
the vortical structures are neither stationary in time nor space, it is conjectured that
the vortical structures fluctuate around their average position. The velocity measured
at a fixed point may fluctuate due to the vortical structure fluctuation. Figure 22
shows the time series of velocity components u′

1/u∗ and u′
2/u∗ at the centreplane of
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Figure 21. Auto-correlation coefficient of u′
1(t). (a) At channel centre. (b) At x2

+ = 15.
Couette flow: −−−−, Re∗ = 192; – – – –, Re∗ = 100; −− - - −−, Re∗ =52 by Komminaho et al.;
- - - -, Re =3360 and ---- ---- - ---- ---- , Re= 1240 by Tillmark & Alfredsson. Poiseuille flow: - - - -,
Re∗ = 191; −− - −−, Re∗ = 97.

C-flow against t∗ = tu2
∗/ν. The streamwise component u′

1/u∗ shows slow fluctuation
with a large amplitude, indicated by a chain dot line, in addition to the conventional
turbulent motion. In the figure, a size of T + = 600 is given as a reference time scale
for this fluctuation. Such slow and large fluctuations appear only on u′

1 for C-flow,
but not on the other components, or of course, on those of P-flow. The pre-multiplied
power spectrum ω+E+

11(ω
+) of this u′

1 at the centre is shown in figure 23. Next to
the lower end of the (−1) power range (constant-ω+E+

11(ω
+) range), a broadband

peak at ω+
p ∼ 0.01 appears that corresponds to the time scale of T + = 600 shown

in figure 22. The peak frequency ωp can be scaled better by outer scales than inner
scales as ωp � (0.05 ∼ 0.07)Ub/h.



220 O. Kitoh, K. Nakabyashi and F. Nishimura

0 1000 2000
–5

0

5

t+

u′2—u*

u′1—u*

–5

0

5

T + = 600

Figure 22. Time series of u′
1 and u′

2 signals of Couette flow (Re∗ = 192) at x2 = h in
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Figure 23. Pre-multiplied power spectrum ω+E11
+(ω+) of u′

1 at channel centre.
−−−−, Couette flow (Re∗ = 192); - - - -, Poiseuille flow (Re∗ = 191).

As described above, the wavy pattern of ũ1 is sensitive to the inlet condition and it
is not easy to control every detail to obtain reproducible data. To tackle this problem
we introduced an artificial disturbance using a small thin plate placed at x3/(2h) = −3
parallel to the flow at the inlet section. This plate introduces a wake component to
C-flow as seen in the spanwise variation of Uc at x1/(2h) = 5.6 shown in figure 24,
which develops into a wavy pattern of Uc at the downstream section. This shows that
large-scale vortices are developing in C-flow. In this case, the wavy variation of Uc in
the spanwise direction is about ±5 % at x2/(2h) = 157, which is five times as large
as the case without disturbance, figure 3. It is conjectured that the fluctuation of the
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Figure 24. Development of wavy variation of Uc in downstream section at Re= 3750.
Left-hand side is for Couette flow and right-hand side is for Poiseuille flow.

large longitudinal vortices is reduced by the introduction of the inlet disturbance.
These rather quiet vortices make it easier to study the vortex characteristics and its
effect on the flow field. In P-flow, however, the same wake at the inlet section soon
decays, and two-dimensional Poiseuille flow is recovered in the downstream section.
Figure 25 shows the velocity vector ũ2 j + ũ3k at x1/(2h) = 157, where j and k are unit
vectors in the x2- and x3-directions, respectively. A pair of counter-rotating vortices
extending the entire channel width can be seen. The vortex components ũ2 and ũ3

are not large, only a few percent of Ub (given by the reference arrow in the figure).
This is consistent with the results of Komminaho et al. (1996). The development of
streamwise vorticity of the vortex pair at its core, ζ̃1 = (∂ũ2/∂x3 − ∂ũ3/∂x2), along
the streamwise direction is shown in figure 26. Because of the limited number of
measurements of ũ2 and ũ3 in the spanwise direction, the estimated value of ζ̃1 in the
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Figure 25. Velocity vectors at x1/(2h) = 157 together with variation of wall friction
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Figure 26. Development of streamwise vorticity at the vortex core in the downstream
direction. Open symbols are for Couette flow and solid symbols are for Poiseuille flow.
Circles and triangles are for positive and negative vortexes, respectively.

figure should be viewed with some reservation. We can obtain the qualitative change of
ζ̃1 along x1/(2h). Up to x1/(2h) = 52, ζ̃1 changes in a complex manner for both C- and
P-flows. For P-flow, ζ̃1 decays almost completely at x1/(2h) = 52. For C-flow, however,
ζ̃1 becomes nearly constant in the farther downstream section. Considering that a
developed C-flow is obtained at x1/(2h) = 90, we believe that the region in which the
streamwise vortex in C-flow is maintained is x1/(2h) � 90. The following discusses
the results in the maintenance region.

The large longitudinal streamwise vortices induce three-dimensionality in the C-
flow. Convection of high (near the moving wall) or low (near the stationary wall)
streamwise component of velocity by the vortex motion makes the equi-velocity
contour wavy in the spanwise direction, as shown in figure 25. Even though the velocity
of the vortex motion itself is low, the convection effect on the velocity U1 is large. The
skin friction coefficient Cf = 2τw/(ρU 2

c ) changes about 20 % sinuously in the spanwise
direction due to velocity variation. Also the turbulence intensity u1 varies sinuously
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Figure 27. Spanwise variation of Uc/Ub and u1/Ub at x2 = h in relation to vortex motion.
The vortex pattern illustrated is not the actual pattern, it is shown to indicate the spatial
position and direction of the motion. �, Uc/Ub; �, u1/Ub .

along the x3-direction, i.e. it is larger in the core than in other areas. Figure 27
summarizes the spanwise variation of Uc and u1 with respect to the vortex
motion. Turbulence intensity has its maximum at the positions of the largest
mean velocity gradient (∂Uc/∂x3)Max and its minimum at ∂Uc/∂x3 = 0. The vortex
pattern schematically shown is time averaged for the fluctuating vortex. The probable
explanation of the u1 and Uc distributions is given as follows, using a simple kinematic
model of the vortex motion. As the vortex fluctuates in the spanwise direction around
its mean position, it is accompanied by the velocity field around it. Provided that the
vortex fluctuation is a simple harmonic with angular frequency ω, and the amplitude
A3 is not large compared with 2h, the velocity fluctuation u′′

1 due to this fluctuation
can be expressed as

u′′
1 = A3

dUc

dx3

sin ωt. (20)

Together with the ordinary turbulent motion u′
1, the intensity of the fluctuating

velocity leads to

{
(u′

1 + u′′
1)

2
}1/2

=

{
u′2

1 + 0.5

(
A3

dUc

dx3

)2
}1/2

. (21)

Here, the correlation between the turbulent motion and the harmonic oscillation
is assumed to be zero. Using the data for dUc/dx3 and u1/Ub at the peak and
lowest positions of the turbulence intensity shown in figure 27, the amplitude can be
estimated as A3/(2h) = 0.28. Although this is a rough estimation, it suggests that the
intensity of the fluctuating velocity changes with dUc/dx3, as shown in figure 27.
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Figure 28. Distribution of shear stress due to turbulent motion and the wavy velocity
component. Open symbols are for Reynolds shear stress and solid symbols are for wavy
component. Spanwise position x3/(2h): circle, −2.2; triangle, −2.6; square, −3.0. (Re∗ =192,
x1/(2h) = 157).

Provided that the velocity is decomposed as in equation (19), the shear stress τ can
be given as

τ = ρν
dU1

dx2

− ρu′
1u

′
2 − ρũ1ũ2. (22)

The third term indicates the momentum transport by the fluctuating component.
Figure 28 shows the distributions of the Reynolds shear stress and −ρũ1ũ2 at various
spanwise positions. Because of the three-dimensional flow configuration induced by
the vortex motion, the sum of the last two terms (−ρu′

1u
′
2 − ρũ1ũ2) is not necessarily

constant in the x2-direction, as is shown in the figure. The wavy component −ρũ1ũ2

is basically positive and its profile differs significantly in the spanwise position, i.e.
the relative position with respect to the vortex core. Along a line normal to the wall
through the vortex core, it takes a minimum value of zero because ũ2 = 0 in this
region. The maximum value of −ρũ1ũ2 is about one quarter of the Reynolds shear
stress.

The transport equation of the kinetic energy of the wavy component averaged
in the spanwise direction 〈q̃2/2〉 = 〈ũi ũi/2〉 can be derived as follows, by assuming
that ũi is periodic in the spanwise direction and that the flow is fully developed (all
variables are normalized by Ub and 2h):

0 =
−∂〈ũ2(p̃ + q̃2/2)〉

∂x2︸ ︷︷ ︸
II

−〈ũi ũ2〉∂〈U1〉
∂x2︸ ︷︷ ︸

III

−∂〈ũiu
′
iu

′
2〉

∂x2︸ ︷︷ ︸
IV

+

〈
u′

iu
′
2

∂ũi

∂x2

〉
+

〈
u′

iu
′
3

∂ũi

∂x3

〉
︸ ︷︷ ︸

V

+
1

4Re

∂

∂x2

〈
ũi

∂ũi

∂x2

〉
︸ ︷︷ ︸

VI

− 1

4Re

〈
∂ũi

∂xj

∂ũi

∂xj

〉
︸ ︷︷ ︸

VII

(23)
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Figure 29. Kinetic energy budget of wavy velocity component. Re∗ =192, x1/(2h) = 157.
Term in equation (23): �, II; �, III; �, IV; �, V; �, VI; �, VII.

Term III is the production term of 〈q̃2/2〉 by the shear stress −ρũ1ũ2 from mean
flow, while terms V are the transfer of kinetic energy from the wavy to the turbulent
component by Reynolds shear stress. The energy budget of the above equation is given
in figure 29. Terms including p̃ or u′

2u
′
3 cannot be measured and are not contained in

the figure. Viscosity related terms, VI and VII, are small enough to be neglected. The
production term III has a positive value, obtaining wavy component energy from the
mean flow, and term V has a negative value of the same size, releasing its energy to
the turbulent motion.

5. Concluding remarks
The mean velocity profile and turbulence characteristics of plane turbulent Couette

flow from low to high Reynolds number as well as the large streamwise vortex
structures are experimentally studied. The important differences of Couette flow from
conventional wall turbulent flow, such as Poiseuille flow, are (i) no shear stress gradient
prevailing in the entire channel, and (ii) the existence of large longitudinal vortices
in the central part of the channel. These two differences are closely related to the
specific features of the Couette flow studied here.

Since the Couette flow is free from the shear stress gradient, the Reynolds number is
a unique parameter of the flow, unlike in Poiseuille flow where the µ-parameter effect
appears implicitly. Because the Couette flow is realized at |µ|→ ∞ and the relation
µ = − Re∗ holds for Poiseuille flow, both Couette flow and high-Reynolds-number
Poiseuille flow are similar, even though the Reynolds number of the Couette flow is not
high, as far as the wall region is concerned. For Couette flow, the Reynolds number
effect on mean velocity and turbulent intensity profiles is quite small in the wall
region. The low-Reynolds-number effect on the profiles is noticeable only when Re∗
is less than 150. The effect appears as the relative size of the viscous length scale with
respect to h increases, and the h-effect appears in the buffer region. The additive con-
stant B of the log law decreases somewhat and the peak value of turbulence
intensity u+

1p drops sharply as Re∗ decreases. These low-Reynolds-number effects
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are significantly different from Poiseuille or turbulent boundary layer flows. The outer
boundary of the log-law area is x+

2u = (0.6 − 0.8)Re∗, which is two or three times
as large as that for Poiseuille flow. The sweep contribution to the Reynolds shear
stress in Couette flow is stronger than in Poiseuille flow because of higher turbulence
activity in the central area of the Couette flow.

Because of the non-zero mean shear in the turbulent core region, the defect law is
no longer Re∗-independent, but its velocity slope Rs increases with Re∗ and seems to
asymptotically approach a constant value of 5 when Re∗ > 500.

There is some mechanism, not clarified yet, in Couette flow that can sustain large-
scale streamwise vortex structures. Because of these vortex structures, there is a long
surviving correlation R11(τ or �x1) in Couette flow, and the streamwise distance
of zero correlation is 3 times as long as that of Poiseuille flow at the channel
centre. Because the large-scale vortices are not stationary but fluctuating around an
average position, a slow fluctuation with large amplitude appears in the streamwise
velocity component at a fixed point, and the power spectrum has a peak at the
lower end (−1) of the power area, ωp � (0.05 ∼ 0.07)Ub/h. The disturbance at the
inlet section makes the large longitudinal vortices rather stationary and the vortex
effects on the flow are pronounced. The large-scale streamwise vortices introduce
a three-dimensional configuration into Couette flow. The skin friction coefficient
varies 20 % in the spanwise direction, and the shear stress is no longer necessarily
constant.
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